On the approximation by {polynomials

نویسنده

  • Carl de Boor
چکیده

As usual, p∗ is called a best approximation (b.a.) to f in (or, by elements of) IPγ,n. To give some examples, let X = Lp[0, 1] and set γ(t) = G(·, t), where G(s, t) is defined on [0, 1] × T . With G Green’s function for a k–th order ordinary linear initial value problem on (0, 1] and T = [0, 1), one has approximation by generalized splines. With G(s, t) = e and T = IR, one has approximation by exponential sums. With G(s, t) = (1 + st)−1 and T = (−1,∞), one has an approximation problem which shares many features with approximation by rational functions. The last two examples lend themselves easily to an extension of T to the complex plane, and reveal their essential properties only after such an extension has been made [5]. Other examples may be found in [7]. A seemingly different example occurs in Numerical Analysis. Here X is the topological dual Y ∗ of a normed linear space Y of functions defined on T , and, for t ∈ T , γ(t) is the linear functional of point evaluation at t, i.e., for all y ∈ Y, γ(t)y = y(t). Best approximation by γ–polynomials of order n to f ∈ X amounts to the construction of a best approximate rule of the form ∑n i=1 aiy(ti) for the evaluation of the linear functional f at y. But it is not difficult to see that many approximation problems by γ–polynomials of fixed order can be considered to be special cases of the last example. For, with X, γ and T given, let Y be the linear space of functions on T whose general element y is given by

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

A fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations

In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.

متن کامل

Numerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order

In this ‎article‎‎, ‎an ‎ap‎plied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of ‎high order ‎Volterra ‎integro-differential‎ equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical ‎illustrations‎ have been ‎solved‎ to ‎assert...

متن کامل

Solving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method

In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method

متن کامل

Solution of Bang-Bang Optimal Control Problems by Using Bezier Polynomials

In this paper, a new numerical method is presented for solving the optimal control problems of Bang-Bang type with free or fixed terminal time. The method is based on Bezier polynomials which are presented in any interval as $[t_0,t_f]$. The problems are reduced to a constrained problems which can be solved by using Lagrangian method. The constraints of these problems are terminal state and con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007